Правила расчета радиаторов отопления

Правильный расчет количества секций батарей отопления

Очень важно купить современные качественные и эффективные батареи. Но куда важнее правильно произвести расчёт количества секций радиатора, чтобы в холодную пору он должным образом прогревал помещение и не пришлось думать об установке дополнительных переносных отопительных приборов, которые увеличат расход средств на отопление.

СНиП и основные предписания

Сегодня можно назвать огромное количество СНиПов, которые описывают правила проектирования и эксплуатации отопительных систем в различных помещениях. Но наиболее понятным и простым является документ «Отопление, вентиляция и кондиционирование» под номером 2.04.05.

В нем подробно описаны следующие разделы:

  1. Общие положения, касающиеся проектирования систем отопления
  2. Правила проектирования систем отопления зданий
  3. Особенности прокладки труб отопительной системы

Монтировать радиаторы отопления необходимо также согласно СНиП под номером 3.05.01. Он предписывает следующие правила монтажа, без которых произведенные расчеты количества секций окажутся малоэффективны:

  1. Максимальная ширина радиатора не должна превысить 70% от аналогичной характеристики оконного проема, под которым он устанавливается
  2. Радиатор должен крепиться по центру оконного проема (допускается незначительная погрешность – не более 2 см)
  3. Рекомендуемое пространство между радиаторами и стеной – 2-5 см
  4. Над полом высота не должны быть более 12 см
  5. Расстояние до подоконника от верхней точки батареи – не менее 5 см
  6. В иных случаях для улучшения теплоотдачи поверхность стен покрывают отражающим материалом

Следовать таким правилам необходимо для того, чтобы воздушные массы могли свободно циркулировать и сменять друг друга.

Читайте так же, наш сравнительный обзор различных видов радиаторов отопления

Расчет по объему

Чтобы точно произвести расчёт количества секций отопительного радиатора, необходимых для эффективного и комфортного отопления жилого помещения, следует принимать во внимания его объем. Принцип весьма прост:

  1. Определяем потребность тепла
  2. Узнаем количество секций, способных его отдавать

СНиП предписывает учитывать потребность в тепле для любого помещения – 41 Вт на 1 м. куб. Однако этот показатель весьма относителен. Если стены и пол плохо утеплены, это значение рекомендуют увеличить до 47-50 Вт, ведь часть тепла будет утрачиваться. В ситуациях, когда по поверхностям уже уложен качественный теплоизолятор, смонтированы качественные окна ПВХ и устранены сквозняки – данный показатель можно принять равным 30-34 Вт.

Если в комнате расположены экранированные радиаторы отопления, потребность в тепле необходимо увеличить до 20%. Часть тепловой нагретых воздушных масс не будет пропускаться экраном, циркулируя внутри и быстро остывая.

Формулы расчета количества секций по объему помещения, с примером

Определившись с потребностью на один куб, можно приступит к вычислениям (пример на конкретных цифрах):

  1. На первом шаге рассчитываем объем помещения по простой формуле: [высота]*[длина]*[ширина](3х4х5=60 куб м.)
  2. Следующий этап – определение потребности теплоты для конкретно рассматриваемого помещения по формуле: [объем]*[потребность на м. куб.](60х41=2460 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Определить желаемое количество ребер можно по формуле: [общая потребность в тепле]/[мощность одной секции](2460/170=14.5)
  5. Округление рекомендуется делать в большую сторону – получаем 15 секций

Многие производители не учитывают, что теплоноситель, циркулирующий по трубам, имеет далеко не максимальную температуру. Следовательно, мощность ребер будет ниже, чем указанное предельное значение (именно ее прописывают в паспорте). Если нет минимального показателя мощности, значит имеющийся для упрощения расчетов занижают на 15-25%.

Расчет по площади

Предыдущий метод расчета – прекрасное решение для помещений, у которых высота более 2.7 м. В комнатах с более низкими потолками (до 2.6 м) можно воспользоваться другим способом, приняв за основу площадь.

В этом случае, рассчитывая общее количество тепловой энергии, потребность на один кв. м. берут равной 100 Вт. Каких-либо корректировок в него покуда вносить не требуется.

Формулы расчета количества секций по площади помещения, с примером

  1. На первом этапе определяется общая площадь помещения: [длина]* [ширина](5х4=20 кв. м.)
  2. Следующий шаг – определение тепла, необходимого для обогрева всего помещения: [площадь]* [потребность на м. кв.](100х20=2000 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Для определения необходимого количества секций следует воспользоваться формулой: [общая потребность в тепле]/[мощность одной секции](2000/170=11.7)
  5. Вносим поправочные коэффициенты (рассмотрены далее)
  6. Округление рекомендуется делать в большую сторону – получаем 12 секций

Поправки, вносимые в расчет и советы

Рассмотренные выше методы расчёта количества секций радиатора прекрасно подходят для помещений, высота которых достигает 3-х метров. Если этот показатель больше, необходимо увеличивать тепловую мощность прямо пропорционально росту высоты.

Если весь дом оснащен современными пластиковыми окнами, у которых коэффициент тепловых потерь максимально снижен – появляется возможность сэкономить и уменьшить полученный результат до 20%.

Считается, что стандартная температура теплоносителя, циркулирующего по отопительной системе – 70 градусов. Если она ниже этого значения, необходимо на каждые 10 градусов увеличивать полученный результат на 15%. Если выше – наоборот уменьшать.

Помещения, площадь которых более 25 кв. м. отопить одним радиатором, даже состоящим из двух десятков секций, будет крайне проблематично. Чтобы решить подобную проблему, необходимо вычисленное число секций поделить на две равные части и установить две батареи. Тепло в этом случае будет распространяться по комнате более равномерно.

Если в помещении два оконных проема, радиаторы отопления нужно размещать под каждым из них. Они должны быть по мощности в 1.7 раза больше номинальной, определенной при расчетах.

Купив штампованные радиаторы, у которых поделить секции нельзя, необходимо учитывать общую мощность изделия. Если ее недостаточно, следует подумать о покупке второй такой же батареи или чуть менее теплоемкой.

Очень многие факторы могут оказывать влияние на итоговый результат. Рассмотрим, в каких ситуациях необходимо вносить поправочные коэффициенты:

  • Окна с обычным остеклением – увеличивающий коэффициент 1.27
  • Недостаточная теплоизоляция стен – увеличивающий коэффициент 1.27
  • Более двух оконным проемов на помещение – увеличивающий коэффициент 1.75
  • Коллекторы с нижней разводкой – увеличивающий коэффициент 1.2
  • Запас в случае возникновения непредвиденных ситуаций – увеличивающий коэффициент 1.2
  • Применение улучшенных теплоизоляционных материалов – уменьшающий коэффициент 0.85
  • Установка качественных теплоизоляционных стеклопакетов – уменьшающий коэффициент 0.85

Количество вносимых поправок в расчет может быть огромным и зависит от каждой конкретной ситуации. Однако следует помнить, что уменьшать теплоотдачу радиатора отопления значительно легче, чем увеличить. Потому все округления делаются в большую сторону.

Если необходимо произвести максимально точный расчёт количества секций радиатора в сложном помещении – не стоит бояться обратиться к специалистам. Самые точные методы, которые описываются в специальной литературе, учитывают не только объем или площадь комнаты, но и температуру снаружи и изнутри, теплопроводность различных материалов, из которых построена коробка дома, и множество других факторов.

Безусловно, можно не бояться и набрасывать несколько ребер к полученному результату. Но и чрезмерное увеличение всех показателей может привести к неоправданным расходам, которые не сразу, порой и не всегда удается окупить.

Формулы расчёта радиаторов отопления для нужной площади

Правильно построенная система отопления создаёт комфортные условия нахождения в доме, квартире или любом другом типе помещения. Основной её элемент — батарея или, как часто её называют, радиатор отопления. При самостоятельном конструировании системы важно не только подобрать изделие по техническим характеристикам, но и провести расчёт радиаторов отопления. Только в этом случае система будет эффективной и сбалансированной.

Устройство отопительных систем

В любой системе отопления, использующей в качестве теплоносителя воду, всегда применяются два основных элемента — трубы и радиаторы. Нагрев помещения происходит следующим образом: нагретая вода по трубам подаётся под давлением или самотёком в систему водопровода. В этой системе установлены батареи, заполняемые водой. Заполнив радиатор, вода попадает в трубу, ведущую её обратно к месту нагрева. Там снова подогревается до нужной температуры и заново направляется в батарею. То есть движение теплоносителя происходит по кругу.

В системе отопления обязательно имеются трубы и батареи

Для достижения наибольшей эффективности батареи располагаются согласно разработанным правилам. Размещать их общепринято в местах поступления холодного воздуха, поэтому их монтируют под подоконниками.

В результате холодный воздух быстрее смешивается с тёплым, исходящим от радиатора, и меньше возникает разнотемпературных зон.

При монтаже следует соблюдать следующие рекомендации:

  • батарея располагается строго в середине под оконным проёмом;
  • ширина радиатора должна составлять не меньше 70% от ширины окна;
  • расстояние от батареи до низа подоконника или верха специального углубления составляет не менее 15 см;
  • высота радиатора над уровнем пола должна превышать 10 см;
  • радиаторные секции не следует закрывать декоративными решётками и другими предметами.

Ставить сильно много секций нежелательно, иначе можно потерять мощность

Установка широкого отопительного устройства образует тепловую завесу, но превышать расчётное количество секций радиатора нежелательно, чтобы не терять мощность батареи. Поэтому, если окно широкое, следует подбирать нагревательное устройство таким образом, чтобы оно было вытянутой формы, или ставить несколько радиаторов.

Если закрывать нагреватели какими-либо предметами, то это может понизить эффективность теплоотдачи системы.

Связано это с увеличением пылеобразования из-за повышенной скорости движения воздуха и искусственной преграды для тёплых потоков.

Как рассчитать диаметр отопительных труб. вы увидите в этом видео:

Типы нагревательных приборов

Батареи используются для передачи тепла от нагретой воды окружающему пространству. Принцип действия изделий основан на применении в качестве нагревателей материалов, которые способны отбирать энергию у теплоносителя и передавать её в виде излучения тепла. Поэтому одна из главных характеристик радиатора — эффективность передачи.

На эффективность радиаторов влияет материал и форма секций

Кроме используемого материала, на эту характеристику влияют и конструктивные особенности изделий. Они должны учитывать, что тёплый воздух из-за своего разряженного состояния легче холодного. Проходя через радиатор отопления, он нагревается и поднимается, втягивая за собой порцию холодного воздуха, которая также нагреется.

Перед тем как рассчитать количество радиаторов на комнату, следует определиться с типом батареи.

Существует несколько вариантов, отличающихся внешним видом, формой секций и материалом, используемым для создания изделия. Современные батареи в зависимости от материала, применяемого для их изготовления, делятся на следующие типы:

  • чугунные;
  • алюминиевые;
  • стальные;
  • биметаллические;
  • медные;
  • пластиковые.

Современные радиаторы могут состоять из разных металлов, а также содержать несколько видов металлов

Кроме теплоотдачи, немаловажный параметр — способность радиаторов выдерживать нужное давление, создаваемое в системе отопления. Так, при отоплении многоэтажного дома считается нормой давление порядка 8−9,5 атмосфер. Но когда контур построен неправильно, оно может снизиться до 5 атмосфер. Для двухэтажных зданий оптимальным показателем считается значение 1,5−2 атмосферы. Это же значение приемлемо для частных домовладений.

Если батарея будет рассчитана на меньшее давление и в контуре возникнет гидравлический удар, то её просто разорвёт со всеми вытекающими последствиями. Поэтому чаще всего предпочтение отдаётся чугунным, алюминиевым и биметаллическим конструкциям.

Изделия из чугуна

Чугунные радиаторы по своему виду напоминают гармонь. Их отличает простота конструкции и аккуратность. Сегодня они пользуются особой популярностью у дизайнеров при создании ретростиля. Батареи из чугуна отличаются низкой теплопроводностью: чтобы прогреть радиатор до +45°С, температура носителя должна быть около +70…+80°С. Устройства крепятся на усиленные кронштейны или устанавливаются на специальных ножках.

Батареи из чугуна обладают довольно низкой теплопроводностью, но долго остывают

Батареи этого типа набираются из секций, которые соединяются между собой с помощью ключа. Места присоединения частей тщательно герметизируются паронитовыми или резиновыми прокладками. Как правило, одна секция современного радиатора обладает тепловой мощностью порядка 140 Вт (против 170 Вт советского образца). В одной секции помещается около одного литра воды.

Преимущества чугуна в том, что он не подвержен коррозии, поэтому его можно использовать с водой любого качества.

Срок службы устройства составляет около 35 лет. Специальный уход за таким типом батареи не нужен. Чугунные батареи долго нагреваются, но при этом и долго остывают. Они спокойно переносят давление в 12 атмосфер. В среднем одна секция может обогреть от 0,66 м² до 1,45 м² площади.

Алюминиевый обогреватель

Существует два способа изготовления алюминиевых батарей — литьё и экструзия. Первого типа устройства делаются в виде цельной детали, а второго — секционной. Литые батареи рассчитаны для использования при давлении в 16−20 атмосфер, а экструзионные — от 10 до 40 атмосфер. Предпочтение отдаётся литым радиаторам из-за большей надёжности.

Алюминиевые радиаторы обладают хорошей теплопроводностью, но подвержены быстрому загрязнению

Теплоотдача батареи, по заявлению производителей, может достигать 200 Вт при температуре носителя +70°C. Практически же при нагреве теплоносителя до +50°C алюминиевая секция размером 100 х 600 х 80 мм обогревает около 1,2 м³, что соответствует теплоотдаче, равной 120 Вт. Объём одной секции занимает около 500 мл.

Следует отметить, что такие обогреватели чувствительны к качеству теплоносителя и быстро загрязняются с риском газообразований. При их установке обязательно предусматривается система очистки воды.

В последнее время на рынке появляются алюминиевые модели, в которых применяется анодно-оксидированная обработка. Это позволяет практически исключить появление кислородной коррозии.

Биметаллические конструкции

Биметаллические радиаторы собираются из стальных труб и алюминиевых панелей. За счёт использования алюминия характеризуются высокой теплоотдачей. Такого типа батареи прочные, срок их службы составляет порядка 20 лет. При температуре теплоносителя +70°C средняя теплоотдача составляет 170−190 Вт. Такое устройство выдерживает давление до 35 атмосфер.

Данный вид радиаторов содержит два вида металлов и объединяет их свойства

Биметаллические радиаторы выпускаются с разным межосевым расстоянием: 20, 30, 35, 50, 80 см. Это позволяет встраивать их в различные формы ниш, даже в полностью квадратные. Секции можно набирать в любом количестве, при этом они полностью идентичны слева и справа.

Для защиты от коррозии внутренние трубы покрываются полимерами. Они не подвержены электрохимической коррозии. Таким радиаторам не страшны гидроудары и высокие температуры. Поэтому биметаллические радиаторы — это изделия с наилучшей производительностью, обеспечиваемой алюминиевым кожухом, они прочны, долговечны и устойчивы из-за внутренней стальной конструкции.

Единственный их недостаток — высокая цена.

Простой расчёт

Если с типом применяемых батарей все решено, то можно приступать к определению оптимального числа батарей и их секций. Для этого надо измерить площадь помещения, в котором планируется установка радиаторов, и узнать мощность одной секции батареи, планируемой к установке. Её значение берётся из паспорта на изделие. После чего нужное количество батарей на комнату рассчитать будет совсем несложно.

Рассчитать количество секций в доме очень просто, используя формулу

Расчёт объёма комнаты выполняется по формуле: V = S *H, м³, где:

  • S — площадь помещения (ширина умноженная на длину), м².
  • H — высота комнаты, м.

Считается, что для обогрева 1 м² необходимо обеспечить тепловую мощность 100 Вт в час. Это правило применялось в советское время для комнат с высотой потолка 2,5−2,7 м и не учитывало толщину и тип перегородок в здании, число окон и дверей, климатическую зону.

Чтобы рассчитать количество секций радиатора на комнату, необходимо просто поделить полученную мощность на мощность одной секции батареи:

  • K — количество секций, шт.
  • Q1 — необходимая тепловая мощность, Вт.
  • Q2 — теплоотдача одной секции, Вт.

Например, для комнаты площадью 20 м² с двумя окнами и высотой потолка 2,7 метра понадобится 2 кВт мощности в час. Поэтому при использовании биметаллического радиатора с мощностью секции 170 Вт понадобится их количество, равное: K= 2000 Вт / 170 Вт = 11,7. То есть на всю площадь нужно 12 секций батарей. Так как радиаторы располагаются под окнами, в зависимости от их количества и определяют число батарей. Для рассматриваемого случая будет необходимо приобрести 2 батареи по 6 секций в каждой.

Но если высота помещения отличается от 2,7 м, то тогда количество секций следует выяснять с учётом объёма. Для этого вводится коэффициент, равный 41 Вт тепловой мощности на 1 м² в случае панельного дома и 34 Вт — если дом кирпичный. Вычисление проводят по формуле: P = V* k, где:

  • P — вычисляемая мощность, Вт.
  • V — объём комнаты, м³.
  • k — коэффициент тепловой мощности, Вт.

Вычисление с учётом коэффициентов

Чтобы точно рассчитать радиаторы отопления по площади помещения, нужно учитывать ряд параметров. За основу расчёта всё так же принимается правило необходимости 100 Вт на 1 м² площади, но формула с учётом коэффициентов будет уже выглядеть другим образом:

Q = S * 100 * K1 * K2 * K3 * K4 * K5 * K6* K7 * K8 * K9, где:

  1. K1 — количество наружных стен. Добавляя этот параметр в формулу, учитывается, что чем больше стен граничат с внешней средой, тем больше происходит теплопотерь. Так, для одной стены он берётся равный единице, для двух — 1,2, трёх — 1,3, четырёх — 1,4.
  2. K2 — местонахождение относительно сторон света. Существуют так называемые холодные стороны — северная и восточная, которые практически не согреваются солнцем. Если наружные стены располагаются относительно севера и востока, то коэффициент берётся равный 1,1.
  3. K3 — утепление. Учитывает толщину стен и материал, из которого они изготовлены. Если внешние стены не утеплены, коэффициент равен 1,27.
  4. K4 — особенности региона. Для вычисления его значения берётся средняя температура самого холодного месяца в регионе. Если она составляет -35°C и ниже, K4 = 1,5, когда температура находится в интервале от -25°C до -35°C, K4 = 1,3, не ниже -15°C — K4 = 0,9, больше -10°C — K4 = 0,7.
  5. K5 — высота помещения. Если потолок до 3 метров, K5 берётся равным 1,05. От 3,1 до 3,5 — K5 = 1,1, если 3,6−4,0 м, K5 = 1,15, а больше 4,1 м — K5 = 1,2.
  6. K6 учитывает теплопотери через потолок. Если помещение сверху неотапливаемое, то коэффициент принимается равный единице. В случае, если оно утеплено, K6 = 0,9, отапливаемое — K6 = 0,8.
  7. K7 — оконные проёмы. При установленном однокамерном пакете K7 берётся равным единице, при двухкамерном — 0,85. Если же в проёмах установлены рамы с двумя стёклами, K7 = 0,85.
  8. K8 учитывает схему подключения радиатора. Так, этот коэффициент может меняться от одного до 1,28. Наилучшее подключение — диагональное, в котором теплоноситель подаётся сверху и обратка подключена снизу, а худшее — одностороннее.
  9. K9 учитывает степень открытости. Самое лучшее положение, когда батарея расположена на стене, тогда коэффициент принимается равный 0,9. Если она закрыта сверху и с фронта декоративной решёткой, K7 = 1,2, только сверху — K7 = 1,0.

Подставив все значения, в ответе получают тепловую мощность, необходимую для обогрева помещения с учётом многих факторов. А далее расчёт секций и количества батарей делается по аналогии с простым вычислением.

Расчет секций радиаторов отопления.

Если необходим точный расчет секций радиаторов отопления, то сделать это можно по площади помещения. Данный расчет подходит для помещений с низким потолком не более 2,6 метра. Для того, чтобы его обогреть тратится 100 Вт тепловой мощности на 1 м 2 . Исходя из этого, не трудно посчитать, сколько понадобится тепла на всю комнату. То есть площадь нужно умножить на количество квадратных метров.

Далее имеющийся результат следует разделить на значение теплоотдачи одной секции, полученное значение просто округляем в сторону увеличения. Если это теплое помещение, например кухня, то результат можно округлить в меньшую сторону.

При вычислении количества радиаторов нужно учитывать возможные теплопотери, учитывая определенные ситуации и состояние жилья. Например, если комната квартиры угловая и имеет балкон или лоджию, то тепло она теряет намного быстрее, нежели комнаты квартир с другим расположением. Для таких помещений расчеты по тепловой мощности необходимо увеличить минимум на 20%. Если в планах монтировать радиаторы отопления в нише или скрыть их за экраном, то расчет тепла увеличивают на 15-20%.

Для расчета радиаторов отопления, вы можете воспользоваться калькулятором расчета радиаторов отопления.

Расчеты учитывая объем помещения.

Расчет секций радиаторов отопления будет более точным, если их рассчитывать, основываясь на высоте потолка, то есть исходя из объема помещения. Принцип расчета в этом случае аналогичный предыдущему варианту.

Вначале нужно вычислить общую потребность в тепле, а уже потом рассчитать количество секций в радиаторах. Когда радиатор скрывают за экраном, то потребность помещения в тепловой энергии увеличивают минимум на 15-20%. Если брать во внимание рекомендации СНИП, то для того, чтобы обогреть один кубический метр жилой комнаты в стандартном панельном доме необходимо потратить 41 Вт тепловой мощности.

Для расчета берем площадь комнаты и умножаем на высоту потолка, получится общий объем, его нужно умножить на нормативное значение, то есть на 41. Если квартира с хорошими современными стеклопакетами, на стенах есть утепление из пенопласта, то тепла понадобится меньшее значение – 34 Вт на м 3 . Например, если комната с площадью 20 кв. метров имеет потолки с высотой 3 метра, то объем помещения будет составлять всего 60 м 3 , то есть 20Х3. При расчете тепловой мощности комнаты получаем 2460 Вт, то есть 60Х41.

Таблица расчетов необходимого теплоснабжения.

Приступаем к расчету: Чтобы рассчитать необходимое количество радиаторов отопления необходимо полученные данные разделить на теплоотдачу одной секции, которую указывает производитель. Например, если взять за пример: одна секция выдает 170 Вт, берем площадь комнаты, для которой нужно 2460 Вт и делим его на 170 Вт, получаем 14,47. Далее округляем и получаем 15 секций отопления на одну комнату. Однако следует учитывать тот факт, что многие производители намеренно указывают завышенные показатели по теплоотдаче для своих секций, основываясь на том, что температура в батареях будет максимальной. В реальной жизни такие требования не выполняются, а трубы иногда чуть теплые, вместо горячих. Поэтому нужно исходить из минимальных показателей теплоотдачи на одну секцию, которые указывают в паспорте товара. Благодаря этому полученные расчеты будут более точными.

Как получить максимально точный расчет.

Расчет секций радиаторов отопления с максимальной точностью получить довольно трудно, ведь не все квартиры считаются стандартными. И особенно это касается частных строений. Поэтому у многих хозяев возникает вопрос: как сделать расчет секций радиаторов отопления по индивидуальным условиям эксплуатации? В этом случае учитывается высота потолка, размеры и количество окон, утепление стен и другие параметры. По этому методу расчетов необходимо использовать целый перечень коэффициентов, которые будут учитывать особенности определенного помещения, именно они могут повлиять на способность отдавать или сохранять тепловую энергию.

Вот как выглядит формула расчета секций радиаторов отопления: КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, показатель КТ — это количество тепла, которое нужно для индивидуального помещения.

1. где П — общая площадь комнаты, указана в кв.м.;

2. К1 — коэффициент, который учитывает остекление оконных проемов: если окно с обычным двойным остеклением, то показатель — 1,27;

  • Если окно с двойным стеклопакетом — 1,0;
  • Если окно с тройным стеклопакетом — 0,85.

3. К2 — коэффициент теплоизоляции стен:

  • Очень низкая степень теплоизоляции — 1,27;
  • Отличная теплоизоляция (кладка стен на два кирпича или же утеплитель) — 1,0;
  • Высокая степень теплоизоляции — 0,85.

4. К3 — соотношение площади окон и пола в комнате:

5. К4 — коэффициент, который позволяет учитывать среднюю температуру воздуха в самое холодное время:

  • Для -35 градусов — 1,5;
  • Для -25 градусов — 1,3;
  • Для -20 градусов — 1,1;
  • Для -15 градусов — 0,9;
  • Для -10 градусов — 0,7.

6. К5 — корректирует потребность в тепле, учитывая количество наружных стен:

7. К6 — учитывает тип помещения, которое находится выше:

  • Очень холодный чердак — 1,0;
  • Чердак с отоплением — 0,9;
  • Отапливаемое помещение — 0,8

8. К7 — коэффициент, который учитывает высоту потолков:

Представленный расчет секций радиаторов отопления учитывает все нюансы комнаты и расположения квартиры, поэтому достаточно точно определяет потребность помещения в тепловой энергии. Полученный результат нужно только разделить на значение теплоотдачи от одной секции, готовый результат округляет. Есть и такие производители, которые предлагают воспользоваться более простым способом расчета. На их сайтах представлен точный калькулятор расчетов, необходимый для вычислений. Для работы с этой программой, пользователь вводит нужные значения в поля и получает готовый результат. Кроме этого, он может использовать специальный софт.

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м 2 , в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м 3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м 2 * 3 м = 48 м 3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

  • биметаллическая секция обогреет 1,8 м 2 ;
  • алюминиевая — 1,9-2,0 м 2 ;
  • чугунная — 1,4-1,5 м 2 ;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:

  • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
  • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Чтобы самая лютая стужа была нипочём! Расчет радиаторов отопления

Вы просматриваете раздел Расчет, расположенный в большом разделе Установка.

Тщательно продуманная система отопления дома — одна из важнейших задач при строительстве и последующем усовершенствовании жилищных условий, поскольку комфортная температура в помещении не только залог уюта, но и важное условие для человеческой жизни.

Расчёт и подбор необходимо совершать в зависимости от ряда условий, таких как материал радиатора, обогреваемой площади, климатических условий региона и др. Для корректного монтажа отопительной системы можно обратиться к профессионалам, а можно осуществить этот процесс с помощью своих умений и навыков.

Замеры для определения радиаторов отопления

Определение параметров отопления в квартире должно начинаться с получения необходимых данных, снятых путём замера.

Этими данными являются: длина комнаты, ширина комнаты, площадь комнаты, количество внешних стен, высота потолков, количество, дверей, количество окон, площадь каждого из окон.

Определение параметров батарей в зависимости от различных факторов

На расчет радиаторов отопления оказывают влияние множество факторов.

По площади жилого пространства

Приняв искомый параметр как Q, расчёт представляет собой формулу:

Q = S×100 Вт (1), где

S ? площадь пространства, для которого производится подсчёт радиатора, м 2 ;

100 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м 2 жилой площади.

Особенности вычислений с применением уточняющих множителей

Уточняющие множители для этого расчёта ? коэффициенты, учитывающие конструкционные особенности расчётного жилья.

Определение Q с их использованием позволит наиболее точно определить тепловые расходы для каждого индивидуального случая.

Коэффициенты уточняют формулу (1) и приводят её к следующему виду:

Q=S×100Вт×α×β×γ×δ×ε×ζ×η×θ (2), где

α — множитель, учитывающий количество внешних стен, которые увеличивают тепловые потери, принимается равным:

Величина αКол-во стен
1,01
1,22
1,33
1,44

β — множитель, учитывающий степень естественной прогреваемости жилого пространства. Зависит от стороны света, на которую выходит окно. β принимается равным:

Величина βСторона света
1,1Север, Восток
1,0Юг, Запад

γ — множитель, учитывающий местные климатические условия. Зависит от средней минимальной температуры января. Значение уточняется по данным справочников или местной гидрометеослужбы. γ принимается равным:

Величина γТемпература
0,7до -10°С
0,9до -15°С
1,1до -20°С
1,3от -20°С до -35°С
1,5от -35°С и ниже

Фото 1. Потери тепла в частном доме. Их нужно учитывать при установке отопительных радиаторов.

δ — множитель, учитывающий наличие стенового утеплителя помещений. δ принимается равным:

Величина δУровень утепления
0,85Высокий
1,0Средний
1,27Низкий

ε — множитель, зависящий от высоты потолков жилья. ε принимается равным:

Величина εВысота потолка
1,0до 2,7 м
1,05от 2,8 м до 3,0 м
1,1от 3,1 м до 3,5 м
1,15от 3,6 м до 4,0 м
1,2свыше 4,1 м

ζ — множитель, учитывающий потерю тепла, за счёт помещения, находящегося над расчётным. ζ принимается равным:

Величина ζТип помещения сверху
0,8Отапливаемое
0,9Утеплённое
1,0Неотапливаемое

η — множитель, использующий зависимость искомого значения от типа окна, установленного в помещении. η принимается равным:

Величина ηТип окна, стеклопакет
0,85Трехкамерный
1,0Двухкамерный
1,27Рамы двойные обычные

Фото 2. Однокамерные, двухкамерные и трехкамерные стеклопакеты. Тип окна влияет на количество устанавливаемых радиаторов.

θ — множитель, учитывающий при расчёте процентное соотношение площади окна к площади пола. θ принимается равным:

Значение θОтношение
0,810%
0,920%
1,030%
1,140%
1,250%

В зависимости от объёма помещения

Учёт объёма жилого пространства позволит получить более точные данные при вычислении отопительного прибора, и формула (1) примет вид:

Q=S×h×41 Вт (3), где

h — высота потолков комнаты, м;

41 Вт ? величина, принимаемая нормативно, означающая количество тепла, необходимое для 1 м 3 жилой площади.

Внимание! Потери тепла ? неминуемый минус при отоплении квартиры.

Формула расчета теплоотдачи радиаторных приборов для квартир

Теплорасчет для квартиры лучше всего выполнить с учётом общих потерь тепла по формуле:

V — объем расчётного пространства, м 3 ;

0,04 — нормативная величина потерь для 1 м 3 ;

ТП — нормативная величина потерь от одного окна, ТП = 0,1 кВт;

n — общее количество окон в квартире;

ТПд — нормативная величина от одной двери, ТПд = 0,2 кВт;

nд — количество дверей в квартире.

Общие теплопотери квартиры определяются также специальным прибором ? тепловизором, который при этом выполняет функцию поиска скрытых строительных дефектов и бракованных материалов.

Фото 3. Тепловизор от производителя Fluke. Прибор позволяет измерить температуру радиаторов отопления.

На общий расчёт также влияет мощность радиатора:

Рст — мощность радиатора;

1,5 — коэффициент, учитывающий работу прибора при температуре от 50?С до 70?С;

k — коэффициент запаса, применяется равным:

Искомый kТип жилья
1,2Квартира
1,3Частный дом
  • Особенности определения радиаторных приборов для многоэтажного дома

Вычисление проводится по формуле:

Q = S×80 Вт (6), где

80 Вт ? значение, принимаемое нормативно, означающее количество тепла, необходимое на 1 м 2 жилой площади, начиная со второго этажа и выше.

Читайте также:  Комнатные термостаты для газовых котлов: технические характеристики, виды и особенности эксплуатации
Рейтинг
( Пока оценок нет )
Загрузка ...